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Ahatrat-Heat transfer including dissipation on a surface with longitudinal curvature has been analyzed 
for forced convection in laminar flow, by the method of matched asymptotic expansions. Using theclassical 
Falkner-Skan wedge flows as the first order solution to the momentum equation, the first order solution 
to the energy equation including dissipation has been obtained. Then, by extending the analysis, the second 
order perturbation for the velocity and temperature fields is obtained. The analysis permits the wall 
temperature to vary as a power function of the distance when there is no dissipation; however, when 
dissipation is included, the wall temperature variation is determined by the pressure gradient parameter if 
similar solutions are still required. The ordinary differential equations obtained from the similarity 
analysis have been numerically solved. The calculated second order temperature profiles have been 
presented graphically as functions of the pressure gradient parameter, Prandtl number, Eckert number, 
wall temperature distribution parameter and surface curvature. It is seen that the second order effect is 
considerable for conditions close to separation and are not necessarily negligible compared with first order 
effects. Dissipation can considerably affect heat transfer for fluids with high Prandtl numbers, the Nusselt 
number changing from positive to negative, as the Eckert number changes from zero to unity. Further, at any 
given Prandtl number, as the curvature changes from concave to convex, the Nusselt number decreases 

if the Eckert number is small, while it increases if the Eckert number is close to unity. 

NOMENCLATURE 

a constant for prescribed wall tem- 
perature ; 
a constant for prescribed velocity 
distribution at the edge of the boundary 
layer ; 
a constant to prescribe local surface 
curvature ; 
Eckert number ; 
non-dimensional stream function ; 
non-dimensional pressure in the outer 
flow ; 
non-dimensional pressure in the inner 
flow ; 
Prandtl number pCp/i? ; 
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CP 
m4 
K 
k 
Re, 
r, 
Nu, 
h, 
7: 

T WY 
t. 

u 0.9 

u, 

U, 

specific heat at constant pressure ; 
local surface curvature ; 
thermal conductivity ; 
curvature parameter ; 
Reynolds number (U,pL/p) ; 
characteristic length ; 
Nusselt number, hL/K; 
film coefficient of heat transfer ; 
non-dimensional temperature in the 
outer flow ; 
specified wall surface temperature ; 
non-dimensional temperature in the 
inner flow ; 
inviscid surface velocity ; 
non-dimensional velocity in the outer 
flow ; 
non-dimensional tangential velocity 
in the inner flow; 
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r! non-dimensional normal velocity in 
the outer flow ; 

0, non-dimensional normal velocity in 
the inner flow ; 

X, outer independent variable ; 

x, inner independent variable ; 

I: outer independent variable ; 

Y> inner independent variable ; 

& wall surface on which flow takes place. 

and B. K. GUPTA 

Greek symbols 

B, pressure gradient parameter ; 

@, dissipation function ; 

IA fluid density ; 

I4 absolute viscosity ; 

Y? wall temperature distribution para- 
meter ; 

8, non-dimensional temperature ; 
E, (Re)-+; 
ICI? stream function ; 

a, limitof(q -fi)asq+ co; 

VI, proportional to stream function at the 
edge of the boundary layer. 

Subscripts 

x, local quantity ; 

1, first order quantity ; 

2, second order quantity ; 

W, value at wall ; 

00, free stream quantity. 

1. INTRODUCTION 

THE CALCULATION of heat transfer from curved 
solid surfaces is of interest in a large number of 
problems of practical interest. Some examples 
of such problems are the aerodynamic heating 
of bodies in flight, flow along airfoil surfaces as 
in turbines and compressors, the cooling of 
gas turbine blades, flow through rocket nozzles, 
etc. 

In the study of flow over surfaces with small 
curvature, it is well known that the boundary 
layer equations of momentum and energy can 
be solved to determine both skin friction and 
heat transfer, yielding results independent of 

curvature. In other words, to the limit of 
accuracy of boundary layer theory, skin friction 
and heat transfer are unaffected by curvature. 
The solutions are therefore the same as for flow 
over the Falkner-Skan wedge. The only effect 
of curvature is to determine the inviscid surface 
speed to which the viscous velocity should tend 
as the edge of the boundary layer is approached. 
If the solution is continued up to the second 
order, curvature appears as a parameter in the 
differential equations for momentum, and the 
solution therefore depends explicitly on 
curvature, unlike in the classical solution, where 
the dependence was merely implicit. 

The influence of curvature on skin friction 
has been studied by Murphy [ 11, Hayasi [2], 
Yen and Toba [3] and Narasimha and Ojha [4]. 
It has been observed that longitudinal curvature 
reduces skin friction, if the flow is on the 
convex side of the surface. Van Dyke [5] has 
observed a similar decrease in skin friction in 
the study of flow over a parabola. The problem 
of heat transfer from wedges (without dis- 
sipation) has been considered by Levy [6] using 
first order boundary layer arguments. Schultz- 
Grunow and Breuer [7] have considered the 
problem of constant wall temperature at zero 
pressure gradient on a curved surface and have 
concluded that convex longitudinal curvature 
reduces heat transfer. 

In the present paper, the problem of heat 
transfer including dissipation from a surface with 
longitudinal curvature has been considered. As 
in Levy’s [6] analysis for wedge flow, both the 
inviscid surface speed of the fluid and the wall 
temperature are allowed to vary as power 
functions of distance from the start. The surface 
curvature is limited to small values by the 
requirements K(x) 6 l/a and K(x) + l/6,. Fol- 
lowing the singular perturbation scheme in a 
manner similar to that of Narasimha and Ojha 
[4], solutions have been obtained to the heat 
transfer problem up to the second order, in- 
cluding dissipation. All the equations have been 
numerically integrated for a wide range of para- 
meters, 0.7 < Pr < 100, and -0.195 < B < 2. 
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For the heat transfer problem without dissipa- 
tion, the wall temperature parameter y is 
arbitrary, and has been allowed to take on values 
in the range -1.0 < y < 4.0. For the problem 
including dissipation, similarity requires that y 
should depend on 8, and cannot be chosen 
arbitrarily. The Eckert number appears as a new 
parameter and numerical solutions have been 
obtained for values of Eckert number ranging 
from 0 to 1. All the solutions have been 
graphically presented. 

2. ANALYSIS 

The continuity, momentum and energy 
equations for the steady flow of an incompres- 
sible constant property fluid may be written in 
the following non-dimensional form : 

div U = 0 (I) 

U. grad U = - grad P - k curl curl U (2) 

U. grad T = &J”T+ $&@. (3) 
P al 

In these equations, U is the vector velocity at 
any point in the flow field, P is the thermo- 
dynamic pressure and T is the absolute tem- 
perature while Re and Pr are the Reynolds and 
Prandtl numbers respectively. The quantity @ is 
the dissipation function given by the expression 

@ = 3 [e:, + et2 + 2e:,]. 

ellT e22 and ei2 being the rate of strain com- 
ponents in the X-Y plane. As usual, the free 
stream speed U,, free stream temperature T,, a 
characteristic dimension L, as well as the 
dynamic pressure 3pUi have been used to 
obtain the non-dimensional form presented in 
equations (lH3). Though written for fluids with 
constant densities, these equations may them- 
selves be used even for the study of all flow 
situations where the Mach number is small and 

compressibility effects negligible. The boundary 
conditions are 

Far upstream: U-+ 1; T+ 1 (4a) 

Surface S : U = 0; T = T,(x)/T,. (4b) 

One first writes the outer expansions of the 
variables in equations (l)-(3) by considering the 
limit E = (Re)-*,+ 0, holding X fixed. These 
expansions may be written as 

U= U,(X,Y)+EU,(X,Y)+.... (5a) 

P = P,(X, Y) + cP,(X, Y) + . . . . (5b) 

and 

T = T,(X, Y) + cT,(X, Y) + . . . . (5~) 

It is readily seen from the above, after substituting 
in the differential equations and collecting the 
coefficients of various powers of E that the outer 
flow is potential at least up to the second order. 
The solution to the outer equations may be 
made to satisfy the conditions given by equation 
(4a). The conditions valid near the wall have 
to be determined by writing an inner solution 
and then matching the outer and inner solutions 
to the required order. 

In order to determine the inner solutions, one 
uses an orthogonal coordinate system consisting 
of curves parallel to the wall and lines perpendi- 
cular to the wall, with the origin at the front 
stagnation point. The inner coordinates are then 
written as y = Y/E and x = X. The inner 
expansions for the velocities, pressure and 
temperature may now be written in the form: 

11 = U,(X, y) + suu,(x, y) + . . . (ha) 

0 = EUr(X, y) + &%,(X, y) + . . . (6b) 

P = P&G Y) + q72k Y) + . * * (W 

r = tr(x,,y) + stz(x, y) + . . . WI 

The continuity, Navier-Stokes and energy 
equations then give the first order inner equations 

?%+cLo 
ay (3 
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aP1 () 

-= 

dY 

a~, a~, a%, apl --_ 
Ul -& + “1 ay = ay2 ax (74 

and 

. U’d) 

Equations of set (7) are the first order boundary 
layer equations of Prandtl along with the 
corresponding first order energy equation. As 
commented upon earlier, these equations do not 
contain curvature explicitly, so that to this order, 
the skin-friction and heat transfer are in- 
dependent of the curvature parameter. It may be 
noticed further, on examining the energy equa- 
tion (7d), that the order of the dissipation term 
depends on the magnitude of the quantity 
(Bg/C,T,). For gases, this quantity is equal 
to (C, - C,)M'/C,, where M is the Mach 
number and C,, C, are the specific heats at 
constant pressure and volume respectively. 
Hence, if the Mach number is small as in slow 
speed flow, dissipation is usually negligible in 
gases since they have Prandtl numbers on the 
order of unity. This argument does not apply to 
liquids whose Prandtl numbers range anywhere 
between 1 and 1000 or more. In such cases, one 
must take dissipation into consideration, even 
if the temperatures are moderate and the fluid 
incompressible. 

Collecting terms of the second order (co- 
efficients of E) leads to the equations presented 
below : 

2 + J4”, + Kyu,) = 0 ay 
35 - Ku2 = 0 

ay 1 

au, au, au, au, ap2 
u*-++v,-++u,--++u,-+--- 

ax ay ax ay ax 

(84 

(8’4 

(8~) 

and, 

at, at, at, at, i a2t2 , 
u,-++v,-+uu,-++2----,- 

ax ay ax ay pray 
=K 

Ku 3 
1 ay 

. (84 

The boundary conditions for the first and 
second order equations may be obtained by 
using the restricted matching principle of 
Lagerstrom [8]. The matching and initial 
conditions for the velocities, pressure and 
temperature are then obtained in the form: 

First order : 

y = 0: q(x,O) = q(x,O) = 0; 

t&,0) = Tw/Tw 

Y + co : u,(x, Y) = U,(X, 0); 

V,(X,O) = 0 

PI(X) = p,(X,O) 

t,(x, Y) = T,(X, 0). 

Second order : 

y = 0: u,(x, 0) = u,(x, 0) 

= t2(x,O) = 0 

Y + 00 : u,(x, Y) = u,w, 0) 

- KyU,(X, 0) 

u2(x, Y) = v,(X, 0) 

Pz(x, Y) = PAX, 0) 

+ KY u:(X, 0) 

t2(x,y) = T,(X,O) = 0. 

(94 

PW 

(94 

(94 

(104 

(lob) 

It is observed from the equations of sets (7HlO) 
that the first order momentum equation is the 
only non-linear equation in the system. The 
second order momentum and the energy equa- 
tions (first as well as second) are linear and non- 
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homogeneous, so that the principle of super- 
position may be used to solve them. This means 
that if we determine a solution to the system 
containing only terms arising from curvature 
effects, and then another solution to the system 
containing only those terms arising from dis- 
placement effects and then superpose the two 
solutions, the composite solution will be com- 
plete in all aspects. Since the purpose of the 
present paper is to confine itself to curvature 
effects, all terms like U,(x, 0) and V,(X, 0) which 
arise due to displacement effects are removed 
from the following analysis. 

In order to simplify calculations further, the 
two second order momentum equations (8b) 
and (8~) are combined after eliminating pz to 
yield [4], 

a~, a~, au, au, u,--++u,-++u,-++v,- ax ay ax ay 

au1 + ay - UlVl 1 I (11) 

where U,, represents the inviscid surface speed 
in wedge flow, obtained from potential theory. 
The boundary conditions for the second order 
equations are 

y =o: u2 = u2 = 0; t,(x, 0) = 0 (12a) 

y+co: u,b, Y) + - KyU,,; t,(x, Y) 

= T,(X,O) = 0. Wb) 

The equations in the present form are 
amenable to a similarity analysis, when the 
surface speed U,,(x) and the wall temperature 
T,,,(x) are specified in a particular way. The 
similarity transformations are the same as those 
used by Narasimha and Ojha [4], extended to 
include the energy equation. Consider the 
transformations 

4 = [ U,Xx)dx, rl = (W3U,,~, (134 

WY Y) = W%(rl) and MI) 

t, - 1 

= (T,/Tm) - 1 Wb) 

wheref, and e1 are functions of q alone. If these 
variables are substituted into the equations of 
set (7), it is seen that similar solutions are 
possible only if 

d(lnUos) = const ; 
m = d(lnx) 

U OS = Cx” (14a) 

Y= 
d[wv - TmJ)l = const. 

d(lnx) 
2 

T (q 
Iv- 

= Tm + AxY, (1W 
where C is an arbitrary constant and m, y are 
parameters specifying the variation of inviscid 
surface speed and wall temperature respectively. 
If the dissipation effect introduced by the term 
(UL/C,T,) (au,/iYy)2 is negligible as for fluids 
with sufficiently small Prandtl numbers, one 
obtains respectively for fi(q) and Q,(q), the 
classical Falkner-Skan and related energy equa- 
tion of Levy [6] : 

f;“(v) +.fih9f;‘(rl) + BP -fi2(d1 = 0 (154 

e;l(tt) + ~~[fl(?)fu~) 
- Y(2 - Lw-;hM?)l = 0 W) 

where the primes denote successive differenti- 
ations with respect to q, while B = 2m/(m + 1). 
In obtaining equations (15), both the quantities 
A and y may be treated as arbitrary constants. 

If dissipation cannot be neglected, restrictions 
have to be placed on the values of A and y in 
order to reduce the energy equation to a form 
similar to equation (15b). It is easily verified, 
using the same transformations as above that if 

y&m=28 
2-8 

(16) 
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the energy equation including dissipation 
reduces to the form 

e;,(n) + PrU-1(W1(tl) - 2B”Yl(r1)8,(rl) 

+ Ef;“(q)] = 0 (17) 

where E = CzLJ,$,/Cr,A is the Eckert number. 
The Eckert number is zero in non-dissipative 
flow, and its magnitude in dissipative flow 
depends on both the free-stream speed U,, and 
the magnitudes of constants C and A. The 
Eckert number can be quite large when A is 
small. 

Equations of set (15) and (17) have the 
boundary conditions 

r~ = 0: fr(O) =f;(O)= 0; 0,(O) = 1 (18a) 

n -+ 00 ; fl(tl) = 1; elk4 = 0. UW 

For the second order system, the use of the 
continuity equation allows the definition of the 
second order stream function given by the 
equations 

w2 u2 =ay a+, ; v2 = - ~ - Kyv,. 
ax (19) 

If the curvature K(x) is prescribed as a power 
function of x by the relation K(x) = C,X’ where 
C, is a constant and I is a parameter, it is possible 
to obtain similar solutions to the second order 
equations by defining the functions f2(~) and 
e,(q) according to the equations : 

+2 = G?Yf2(rl) and e,(v) = 
t2 

(T,/TJ - 1. (20a) 

The exponent n is then given by the relation 
n = (I + l)/(m + 1). In the following, attention 
will nonetheless be concentrated on a subset of 
the above general transformations, wherein it is 
required that the power of l in the equation for 
ti2 be the same as in equation (13b) for *I. Such 
solutions of the first and second orders have 
been called ‘jointly similar” in the literature [9]. 
Then, n = l/2 and 1 = (m - 1)/2. On writing 
with Narasimha and Ojha [4] 

K(x) = kU,J(25)f 

= k C(m + ‘1 

[ 1 2 
+ X(m- 1)/Z 

(20b) 

where k is called the “Curvature Parameter”, 
one obtains the following second order 
equations : 

_I-;’ +_fi_G - 2BYl.G +f;‘fz 

= k{f;‘Wl - 1) -flf; - BhU-;2 - 1) 

-j&u; +fxl + Bs + a> (2W 

@; + Nfle; - (2 - Bw-;~2 +fPl) 

+fze; = W~hU’l - ~(2 -- B)f;~,l 
-e;}. Wb) 

Equation (21b) is the second order energy 
equation without dissipation. If dissipation is 
included, one gets the equation 

@; + Pr[f,B; - U(f;ez +f;e,) +fze;l 

= k{Pr[?(f,B; - 2Bf;e,) + 2Ef;j-J 
- I!$]} - 2PrEf;‘f’;. (22) 

In equation (21a) above, CI = Lim (q -fi), and is 

a function of B. The boundarycotditions may be 
written in the form 

9 = 0 : f2(o) = f;(o) ; e,(o) = 0 (234 
q + co : f;(q) = - kq ; 0,(m) = 0. (23b) 

The set of equations (16) (17) (21) and (22) has 
been integrated numerically on a CDC 6400 
digital computer, using the Runge-KuttaaGill 
integration procedure. Solutions have been 
obtained for a large range of parameters, 
0.7 < Pr < 100, -0.195 < B < 2.0, 0 < E < 1, 
and - 1.0 < y < 4.0 (without dissipation). The 
computed results enable one to determine the 
local heat transfer coefficient, as well as the 
change in Nusselt number due to the second 
order correction. These are given respectively 
by the expressions 

1 
W,) (Re,Ff = - (2 _ BI+ &to) 

[ 

+&e;(o) 
k 1 (244 

ke 
(A%J(~e,)-* = - (2 _ p)& k -e;(o) (2&) 



LONGITUDINAL SURFACE CURVATURE 1581 

3. DISCUSSION AND CONCLUSIONS 

Equations (15), (17), (21) and (22) along with 
boundary conditions describe two dimensional 
flow past a curved surface and contain the 
parameters fi, y, Pr, E and k. In order to bring 
out the behaviour of the solutions clearly, flows 
without and with dissipation are considered 
separately in what follows. 

(a) Non-dissipatiuej7ows (E = 0). The effect of 
longitudinal curvature on heat transfer in flow 
with no dissipation has been discussed in detail 
by Gupta [lo]. A brief summary of the results is 
given below so that flows without and with 
dissipation may be compared. 

Figure 1 shows the variation of wall 
temperature gradient &(0)/k as a function of 4, 
for specified values of y. The quantity 8;(0)/k is 
positive [while 13’~(0) is negative], increasing 
monotonically as the flow changes from high 
acceleration to separation, for positive and small 
negative values of y. The large increase in 
B;(O)/k with the approach of separation is 
similar to the trend of f’JO)/k [4], which 
becomes very large near separation, 0 = 
-0.198838. Since the second order quantities 

become far larger than the corresponding first 
order quantities near separation, it is doubtful 
whether the asymptotic expansions are valid 
close to separation. Similarly, it is doubtful 
whether the solutions are valid for large 
negative values of y, because of the singularity 
at x = 0 in the prescribed surface temperature 
[7”(x) = T, + AxY]. For small negative values 
of y and all positive values, the solutions are 
expected to be uniformly valid. 

Figure 2 shows the variation in local Nusselt 
number with the curvature parameter, and 
compares the present results with those of 
Schultz-Grunow and Breuer [7] and Van 
Dyke [Yj. As is clear from equation (24a), the 
local Nusselt number is linearly related to kc 
when Pr, y and B are fixed. With adverse 
pressure gradients (B negative), the Nusselt 
number diminishes more rapidly than for 
favourable pressure gradients (B positive), as k& 
increases. For highly accelerated flows, the 
Nusselt number varies very little with changing 
k&, i.e. B;(O)/k is small for such cases. For plane 
stagnation flow, (y = 0, B = 1 and Pr = 0.7) 
the results of Fig. 2 are in exact agreement with 

O-6 

L I 
so-2 0 

I I I 
P4 0.6 I.2 1.6 2.0 

P 

FIG. 1. Variation in second order wall temperature gradient (E = 0) with pressure. 
gradient. 
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Van Dyke [5], while for flow with zero pressure 
gradient (B = 0), constant wall temperature 
(y = 0) and Pr = 0.7, the agreement between the 
present results and those of Schultz-Grunow 
and Breuer [7] is not exact. In fact, though the 
plot of [7] appears to be straight in Fig. 2, 
there is a slight curvature in it, making it deviate 
more and more from the presently calculated 
results as the magnitude of ck increases. It has 
been shown by Gustafson and Pelech [ll] that 

P-0 Pr-0.7 
y-04 

P=r.o Pr=0.7 y=0 

P=o Pr=0.7 y-0 

Ref.7>--- 

P-o Pr=O.7 y=-0.3 

1 I I I I 
-0.04 -0.02 0 0.02 0.04 

X.5 

FIG. 2. Variation in local Nusselt number (E = 0) with 
curvature parameter. 

the results of [7] are approximate due to the use 
of the inviscid surface speed rather than the true 
velocity in the boundary layer to calculate the 
pressure gradient in the normal direction. 

If the change in Nusselt number due to 
second order effects is computed, it is seen to be 
rather small (1.5 per cent or less) in highly 

and B. K. GUPTA 

accelerated flows. In flows with adverse pressure 
gradients however, the second order effects can 
range from 0 to 14 per cent or more, as shown by 
Gupta [lo]. Such large differences cannot be 
neglected, and the second order effects must be 
taken into account for accurate predictions of 
heat transfer. 

(b) Flows with dissipation. In general, dis- 
sipation may be expected to reduce heat transfer 
from the wall to the fluid for all Prandtl numbers. 
The effects of pressure gradient parameter on the 
first order temperature profile are indicated in 
Fig. 3, which is a plot of e,(q) with B as a 
parameter for two values of Prandtl number, 
Pr = 0.7, and Pr = 10.0 and Eckert number 
unity. Because of the large Eckert number 
chosen, they exaggerate the effects of dis- 
sipation. Nevertheless, they clearly show that 
dissipation changes the wall temperature 
gradient, and may cause reversed heat transfer 
from the fluid to the wall, even when the wall 
temperature is higher than that of the free- 
stream. Many of the temperature profiles, 
especially those for conditions close to separa- 
tion, exhibit a point of inflection. 

The effect of dissipation on the second order 
temperature profile is exhibited in Fig. 4, which 
shows 6,(q)/k for various values of 4, Eckert 
number unity and Pr = 0.7. It is interesting that 
these curves exhibit a negative gradient at the 
wall (i.e. B;(O)/k is negative), as opposed to the 
case with no dissipation, where the gradient is 
positive. For Eckert numbers intermediate 
between zero and unity, &(0)/k changes gradually 
from positive to negative values. Even when 
8,(q)/k starts with negative values, it becomes 
positive, before reducing to zero for sufficiently 
large q at the edge of the boundary layer. As in 
non-dissipative flow, the second order effects 
are large for negative values of B close to 
separation and small for highly accelerated 
flows. A similar trend is observed for higher 
values of Prandtl number as well, except that 
the magnitudes of l12(q)jk are much larger. 

Figure 5 shows the first order temperature 
gradients 0;(O) as a function of fl, with Eckert 
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CD- I 

0.6 ’ \ \ 
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‘/ 
\ 

0.4 v!isiif \ 
\ \ \. 
\ 
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\ 

\\ i 

O-2 
'1 ' 

FIG. 3. First order temperature proliles including dissipation, with E = 1. 

FIG. 4. Second order temperature profiles including dissipation, with E = 1. 
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-1.6 

-2-4 

t 
-3-2' I I 

02 06 
I 

IO 14 

P 

FIG. 5. Variation of e;(O) with pressure gradient parameter, for various values of E. 

Ly 

Pr=lO E-0.05 

0 

FIG. 6. Variation of t$(O)/k with pressure gradient parameter, for various values of E. 
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number as a parameter, all for a Prandtl 
number of 10. The temperature gradient which 
is seen to be negative when the Eckert number is 
small, gradually decreases in magnitude and 
becomes almost zero when E = O-75. For larger 
values of Eckert number, the gradient becomes 
positive, showing that heat transfer occurs from 
the fluid to the wall, even though the plate 
temperature is higher than that of the fluid 
free-stream. Figure 6 shows the variation of the 
second order gradient &(0)/k as a function of B, 
again with Eckert number as a parameter, for a 
Prandtl number of 10. When Eckert number 
increases, &(0)/k changes sign from positive to 
negative, as opposed to the first order gradient 
which changes from negative to positive. This 
difference may be explained by referring to 
equations (7d) and (8d). In equation (7d), the 
term (c?u,/c?~)~ is positive, and the first order 
dissipation term raises the temperature of the 
fluid close to the wall above that of the fluid with 
no dissipation. This in turn reduces heat transfer 
from the wall to the fluid, making e;(O) decrease 

in magnitude first, and finally change sign from 
negative to positive for sufficiently large values 
of Eckert number. On the other hand, to the 
second order, dissipation effects are represented 
by the terms (&,/ay)x (~u,/~y~Ku,(&~,/~y), as 
seen from equation (8d). These terms are positive 
if the curvature parameter k is negative and 
negative if k is positive, as may be deduced from 
the second order momentum equation. Hence, 
for negative values of k, the second order dis- 
sipation terms may be expected to reinforce the 
first order terms. On a body with concave 
curvature (k < 0) therefore, the first and second 
order terms should both reduce heat transfer 
from the warm surface to the fluid. In other 
words, the temperature gradients at the wall 
should be positive, or if negative, small in 
magnitude compared with the case of zero 
Eckert number. Similarly, if the body has 
convex curvature (k > 0), the first and second 
order terms are expected to cause opposing 
effects. 

Figure 7 shows the gradients e;(O) and 

- First order 
--2 

---- Second order 

I I I 
0.6 I.0 1.4 

P 

FIG. 7. Values of e;(O) and 8;(0)ik with Prandtl number as parameter. 
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&(0)/k as functions of B for three values of 
Prandtl numbers, Pr = 0.7, 10 and 100, so 
that the effect of Prandtl numbers on these 
gradients may be studied. All curves have been 
plotted with Eckert number 1.0. It is clear that 
@i(O) changes sign from negative to positive with 
increasing values of Prandtl number, while 
8;(0)/k is negative for all Prandtl numbers when 
Eckert number is unity. For small Eckert 

FIG. 

o‘l- 

---04 

---0.8 

-Ppr=lO 

---- ,Dr=o.7 -1.2 

kc 

8. Plot of Nu,(Re,)-Y(2 - B) against the curvature 
parameter. 

numbers, B;(O)/k may be expected to be negative 
when Pr = 0.7, and to become positive for large 
Prandtl numbers. 

These effects are more clearly exhibited in Fig. 
8, which shows plots of (Nu,)(R~,)-~,/(~ - B) 
against kcz, for selected values of 8, Pr and E. 
The solid lines near the top of the figure are for 

Eckert numbers ranging from 0.05 to 1.0, all 
for B = - 0.195 and Pr = 10. It is quite clear 
that the slopes of the lines change from negative 
to positive as the Eckert number increases. This 
means that for small dissipation, heat transfer 
diminishes with change of curvature from 
concave to convex, while for large dissipation, 
the heat transfer increases with a similar change 
of curvature. Moreover, as observed earlier, for 
sufficiently large Eckert numbers, the heat 
transfer is from the fluid into the plate, when the 
curvature changes sign, and for a sufficiently 
large convex curvature, heat transfer again 
occurs from the hot surface to the fluid. 

The dotted straight lines in Fig. 8 are for 
Pr = 0.7 and varying values of B, all for Eckert 
number unity. All these lines have positive 
slopes, showing that even with relatively small 
Prandtl numbers, dissipation can cause an 
increase in heat transfer with a change of 
curvature from negative to positive. 

The slope of the lines drawn in Fig. 8 indicates 
the change of Nusselt number due to curvature 
effect, as opposed to the first order effect which 
does not take account of curvature. The 
magnitudes of Nu, along the line ke = 0 are 
those due to the first order theory alone. It is 
readily seen that when Eckert number is small 
and 4 is close to separation, the relative change 
in Nusselt number due to curvature is about 
12-15 per cent. For large Eckert numbers above 
0.5, this relative change may be as high as 
150 per cent or greater, when ks changes from 
0.0 to 0.06. Nevertheless, there lies a small range 
of values of Eckert numbers between these two 
extremes, where the curvature parameter has 
negligible influence on heat transfer so that the 
first order theory is by itself sufficient. In the 
range of parameters indicated on the graph, this 
condition may be expected for Eckert numbers 
around 0.15, if the Prandtl number is 10. Further, 
the second order effects can be quite considerable 
at large Prandtl numbers, even when the pressure 
gradient is positive. This can be seen from the 
plots in Fig. 8 for other values of 4. Thus, for 
large Prandtl numbers, the second order effects 
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cannot be neglected, if reasonable approxima- 
tions to heat transfer coefficient are necessary. 

The results discussed above cannot be extra- 
polated to large values of curvature parameter 
since the theory that has so far been developed is 
valid only for small curvatures. For large values 
of .ck, the expansions for velocity and temperature 
will not be uniformly valid. 

It is possible, with the curves plotted earlier, 
to find the magnitude of the curvature parameter 
which reduces the wall to an adiabatic surface, 
correct to the second order. This is obtained by 
equating Nu, in equation (24a) to zero when 
there is obtained 

(ks)adiabatic wall = - e;(O)/ I3XWl. (25) 

An examination of the curves in Figs. 6 and 7 
shows for a Prandtl number of 10, that the 
value of ke which reduces the wall to adiabatic 
conditions is positive for very small Eckert 
numbers and becomes negative as the Eckert 
number rises, but then again becomes positive 
when the Eckert number approaches unity. This 
trend is generally true of higher Prandtl numbers 
as well. For a Prandtl number 0.7 on the other 
hand, the value of ke for an adiabatic surface is 
first positive when Eckert number is small, and 
is negative at values of Eckert number near unity. 
Moreover, the magnitude of curvature parameter 
which renders the surface adiabatic increases 
with increasing values of the pressure gradient 
parameter /I. The values of ke needed for an 
adiabatic surface have not been calculated since 
they are large, and the asymptotic expansions 
are likely to be invalid for large curvatures. 

Concluding, it is seen that for fluids of large 
Prandtl numbers, dissipation has a considerable 
effect, even when the Eckert number is not very 
large. The heat transfer characteristics of the 
wall vary considerably depending on the Eckert 
number, as is easily expected. When the flow is 
about to separate, the second order effects can 
be extremely pronounced, while they are not so 
severe for accelerating flows. 
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EFFET D’UNE COURBURE LONGITUDINALE D’UNE SURFACE SUR UN 
TRANSFERT THERMIQUE AVEC DISSIPATION 

R&urn&On a analyse par la method des dbveloppements asymptotiques un transfert thermique par 
convection force dam un ecoulement laminaire avec dissipation sur une surface a courbure’longitudinale. 
En prenant les ecoulements classiques de Falkner-Skan autour d’un dibdre comme solution du premier 
ordre de l’equation de quantite de mouvement, on obtient alors la solution de premier ordre de l’equation 
de l’energie avec dissipation. Puis par extension de I’analyse est obtenue la perturbation de second ordre 
relative aux champs de vitesse et temperature. L’analyse permet de considerer une temperature par&ale 
variable suivant une fonction de puissance de la distance quand il n’y a pas de dissipation, cependant quand 
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il y a dissipation, la variation de temperature a la paroi est dtterminee par le parametre de gradient de 
pression si on recherche encore des solutions de similitude. Les equations differentielles ordinaires obtenues 
a partir de l’analyse de similarite sont rbsolues numtriquement On a prbente graphiquement les protils 
de temperature calculb au second ordre en fonction du parametre de gradient de pression, du nombrr de 
Prandtl, du nombre d’Eckert, du parametre de distribution de la temperature par&ale et de la courbure 
de la surface. On voit que l’effet de second ordre est considerable pour des conditions proches de la separa- 
tion et qu’il n’est pas ntcessairement negligeable compare a celui du premier ordre. La dissipation peut 
considtrablement affecter le transfert thermique pour les fluides a grands nombres de Prandtl, le nombre 
de Nusselt prenant des valeurs positives ou negatives quand le nombre d’Eckert varic de 0 a 1. Pour un 
nombre quelconque de Prandtl don& lorsque la courbure passe du concave au convexe. le nombre de 
Nusselt dtcroit si le nombre d’Eckert est petit. tandis qu’il croit si le nombre d’Eckert est proche de I’unite. 

EINFLUSS DER OBERFLACHENLANGSKRUMMUNG AUF DEN W~~RMEUBERGANG 
MIT DISSIPATION 

Zusammenfassung-Es wird der Warmelbergang mit Dissipation an einer ObertlLche, die in Stromungs- 
richtung gekriimmt ist, filr erzwungene laminare Striimung mit der Methode der angepassten asymptoti- 
schen Entwicklungen untersucht. Mit der Losung der klassischen Falkner-Skan-Eckenstromungen 
als erster Nahrung fiir die Impulsgleichung wurde eine Losung erster Naherung fti die Energiegleichung 
mit Berticksichtigung der Dissipation ermittelt. Durch Ausdehnung der Betrachtungsweise wurde dann 
die Stiirung zweiter Ordnung fiir das Geschwindigkeits- und Temperaturfeld ermittelt. Das Verfahren 
gestattet, die Wandtemperatur als Potenzfunktion des Abstandes zu variieren, wenn man die Dissipation 
vernachllssigt. Wenn man jedoch die Dissipation beriicksichtigt, wird die Anderung der Wandtemperatur 
bestimmt durch den Parameter des Druckgradienten, wenn man noch lhnliche Liisungen fordert. Die 
gewiihnlichen Differentialgleichungen aus der Ahnlichkeitsbetrachtung werden numerisch gel&t. Die 
in zweiter Naherung berechneten Temperaturprofile wurden graphisch aufgetragen als Funktionen des 
Parameters der Druckgradienten, der Prandtl-Zahl, der Eckert-Zahl, der Wandtemperaturverteilung und 
der Oberfllchenkriimmung. Es wird gezeigt, dass der Effekt zweiter Ordnung beachtlich ist fiir die 
Bedingungen der Abliisung und nicht ohne weiteres vernachllssigt werden kann im Vergleich mit den 
Effekten erster Ordnung. Die Dissipation kann den WIrmetibergang in Medien mit hoher Prandtl-Zahl 
beachtlich beeintlussen, wobei die Nusselt-Zahl von positiven auf negative Werte iiberwechselt. wenn die 
Eckert-Zahl von Null auf Eins anwlchst. Weiterhin nimmt bei gegebener Prandtl-Zahl die Nusselt-Zahl 
beim Ubergang von einer konkaven zu einer konvexen Krtimmung der Oberflache ab. wenn die Eckert- 

Zahl klein ist. wogegen sie zunimmt. wenn die Eckert-Zahl in die NLhe von Eins kommt. 

BJIMFIHME IIPOflOJIbHOr? ICPMBM3’HbI HOBEPXHOCTM HA 
TEHJIOOBMEH C ~HCCHHAIJHEH 

AHrroTaqHJi-AHanM3apoBa~~n TennOO6MeH Ha IIOBepXHOCTM C IlpO,!(OJlbHOfi KpMBM3Hdi C 

ygeTOM J(liCCliIIa~HH AJIH CJIyqaH BbIHyHiJ&eHHOrO TeYeHMR MeTOAOM CpawHBaeMbIX aCRMnTOT- 

wfecKi4x pasnomewnti. Bcnonbsyn ufiaccnqecmre nnnnonbre TeqeHun Oonnnepa-CKsna B 

KaqecTBe penteunti nepnoro npn6nnxteuwn ypanuenki3 KOJlEl'4eCTBa ~BWKeHMR, nOJlyqeH0 

peureH5fe nepnoro npa6namem4n ypaBHeHHR 3Heprall C yqeTOM nHccIuIaq5fn. 3aTeM, 

npononwan 3~0~ aHanH3, nonyseHbI pemesaE BToporo npH6naHteHAfl cK0pOcT~bIx M 

TeMnepaTypHbIx noneSi. CornacHo BT~MY aaannay TeMnepaTypa cTeHKn MoNeT H3MeHfITbcR 

KaK cTeneHHan +~HK~MR paccToflH5iH EIpkl OTCyTCTBRI4 ~HCCkfna~MM. O&HaKO C yqeTOM 

jqwzcnnaqnu a3MeHeHae Tehfneparypbr creuuu 0npegenfzeTcfl napaMeTpoM rpafluewra 

AaBJIeHIWI, eCJIH He06XOAL1MbI aBTOMOReJIbHbIe peIIIeHEiR. ~HCJIE!HHO peIIIeHbI 06bIKHOBeHHbIe 

n@$epeHqnanbHbIe ypaBHeHafl,nonyqeHHbIe 143 aHan83a noAo6wI.PaccsnTaHHbIe TeMnepa- 

TypHbIe npo@nn BTOpOrO npu6naHcerrnn npeRcTanneribt rpa#asecKta nan $ynnnnn napaMeTpa 
rpannerrra fiasneunn, qncna HpauRTnn, qncna %KepTa, napahrerpa pacnpeAenenu3 Tehrne- 
paTypb1 CTeHKLl II KpIIBEIBHbI IIOBepXHOCTI4. BMAHO, 'ST0 BJIHRHlle BTOpOrO npH6JIWfJeHHfl 

CyweCTBeHHO AJIH yCJIOBI48, 6JIHSKHX K OTpbIBy, II HeO6R3aTeJIbHO MaJIO 110 CpaBHeHHlO C 

BJIllRHEleM IIepBoro npa6nnHiertan. &lCCI4naLJI4R MOWeT OKa3bIBaTb 3Ha'lElTe.ilbHOe BJIEIRHRe 

Ha TeIIJIOO6MeH B HU~AKOCTRX C 6OJIbLIIHMH qllCjlaMI4 npaHATJIfl, npa 3TOM qUCJI0 HyCCeJIbTa 

I13MeHReTCR OT IIOJIOHEHTeJIbHOrO 3HaqeHHR A0 OTpHqaTenbHOrO 110 Mepe Tore, KaK qMCJI0 

3KKepTa I13MeHReTCR OT HyJIR A0 eAIIHRUb1. AaJIee, npH JIIO60M 3aaaHHOM VMCJIe npaHATJIR ( 
&,SMeHeHBeM KPIIBIISHEJ OT BOrHyTOfi A0 BbInyKJlOti YMCJIO HyccenbTa yMeHbllraeT-3 npM 

MUIOM qHCJIe 3KKepTa M yBeJItlWBaeTCR, eCJ,,, YkiCJIO 3KKepTa 6JIHFlKO K t?AiTHMI\e. 


