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Abstract—Heat transfer including dissipation on a surface with longitudinal curvature has been anatyzed
for forced convection in laminar flow, by the method of matched asymptotic expansions. Using the classical
Falkner-Skan wedge flows as the first order solution to the momentum equation, the first order solution
to the energy equation including dissipation has been obtained. Then, by extending the analysis, the second
order perturbation for the velocity and temperature fields is obtained. The analysis permits the wall
temperature to vary as a power function of the distance when there is no dissipation; however, when
dissipation is included, the wall temperature variation is determined by the pressure gradient parameter if
similar solutions are still required. The ordinary differential equations obtained from the similarity
analysis have been numerically solved. The calculated second order temperature profiles have been
presented graphically as functions of the pressure gradient parameter, Prandtl number, Eckert number,
wall temperature distribution parameter and surface curvature. It is seen that the second order effect is
considerable for conditions close to separation and are not necessarily negligible compared with first order
effects. Dissipation can considerably affect heat transfer for fluids with high Prandtl numbers, the Nusselt
number changing from positive to negative, as the Eckert number changes from zero to unity. Further, at any
given Prandtl number, as the curvature changes from concave to convex, the Nusselt number decreases
if the Eckert number is small, while it increases if the Eckert number is close to unity.

NOMENCLATURE C, specific heat at constant pressure;
A, a constant for prescribed wall tem- K(x), local surface curvature;
perature; K, thermal conductivity;
C, a constant for prescribed velocity k, curvature parameter;
distribution at the edge of the boundary Re,  Reynolds number (U pL/p);
layer; L characteristic length ;
C;, a constant to prescribe local surface Nu, Nusselt pumber, hL/K ;
curvature ; h, film coefficient of heat transfer;
E, Eckert number; T, non-dimensional temperature in the
f, non-dimensional stream function; outer flow;
P, non-dimensional pressure in the outer T,,  specified wall surface temperature;
flow; A non-dimensional temperature in the
p, non-dimensional pressure in the inner inner flow;
flow; U,, inviscid surface velocity;
Pr, Prandtl number uC,/K; U, non-dimensional velocity in the outer
flow;
* Presently on leave from: Department of Mechanical u, non-dimensional tangential velocity
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in the inner flow;
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V, non-dimensional normal velocity in
the outer flow;
v, non-dimensional normal velocity in

the inner flow;
X, outer independent variable;
X, inner independent variable;
Y, outer independent variable ;
¥, inner independent variable;
S, wall surface on which flow takes place.

Greek symbols
B8, pressure gradient parameter ;
o, dissipation function;
0, fluid density ;
U, absolute viscosity;
¥, wall temperature distribution para-
meter ;
0, non-dimensional temperature ;
& (Re)_%:
, stream function;
o, limit of (n — f))asn — oo;
n, proportional to stream function at the

edge of the boundary layer.

Subscripts
X, local quantity;
1, first order quantity;
2, second order quantity;
w, value at wall;
0, free stream quantity.

1. INTRODUCTION

THE CALCULATION of heat transfer from curved
solid surfaces is of interest in a large number of
problems of practical interest. Some examples
of such problems are the aerodynamic heating
of bodies in flight, flow along airfoil surfaces as
in turbines and compressors, the cooling of
gas turbine blades, flow through rocket nozzles,
etc.

In the study of flow over surfaces with small
curvature, it is well known that the boundary
layer equations of momentum and energy can
be solved to determine both skin friction and
heat transfer, yielding results independent of
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curvature. In other words, to the limit of
accuracy of boundary layer theory, skin friction
and heat transfer are unaffected by curvature.
The solutions are therefore the same as for flow
over the Falkner-Skan wedge. The only effect
of curvature is to determine the inviscid surface
speed to which the viscous velocity should tend
as the edge of the boundary layer is approached.
If the solution is continued up to the second
order, curvature appears as a parameter in the
differential equations for momentum, and the
solution therefore depends explicitly on
curvature, unlike in the classical solution, where
the dependence was merely implicit.

The influence of curvature on skin friction
has been studied by Murphy [1], Hayasi [2],
Yen and Toba [3] and Narasimha and Ojha [4].
It has been observed that longitudinal curvature
reduces skin friction, if the flow is on the
convex side of the surface. Van Dyke [5] has
observed a similar decrease in skin friction in
the study of flow over a parabola. The problem
of heat transfer from wedges (without dis-
sipation) has been considered by Levy [6] using
first order boundary layer arguments. Schultz—
Grunow and Breuer [7] have considered the
problem of constant wall temperature at zero
pressure gradient on a curved surface and have
concluded that convex longitudinal curvature
reduces heat transfer.

In the present paper, the problem of heat
transfer including dissipation from a surface with
longitudinal curvature has been considered. As
in Levy’s [6] analysis for wedge flow, both the
inviscid surface speed of the fluid and the wall
temperature are allowed to vary as power
functions of distance from the start. The surface
curvature is limited to small values by the
requirements K(x) < 1/4 and K(x) € 1/4,. Fol-
lowing the singular perturbation scheme in a
manner similar to that of Narasimha and Ojha
[4], solutions have been obtained to the heat
transfer problem up to the second order, in-
cluding dissipation. All the equations have been
numerically integrated for a wide range of para-
meters, 07 < Pr <€ 100, and —~0195 < B € 2.
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For the heat transfer problem without dissipa-
tion, the wall temperature parameter y is
arbitrary, and has been allowed to take on values
in the range —10 < y < 40. For the problem
including dissipation, similarity requires that y
should depend on B, and cannot be chosen
arbitrarily. The Eckert number appears as a new
parameter and numerical solutions have been
obtained for values of Eckert number ranging
from 0 to 1. All the solutions have been
graphically presented.

2. ANALYSIS
The continuity, momentum and energy
equations for the steady flow of an incompres-
sible constant property fluid may be written in
the following non-dimensional form :

divU=0 (1)

1
Ugrad U= — grad P — R—ecurl curl U (2)

Ugrad T = L V2T+1 U P 3)
F818C T = RePr ReC,T,

In these equations, U is the vector velocity at
any point in the flow field, P is the thermo-
dynamic pressure and T is the absolute tem-
perature while Re and Pr are the Reynolds and
Prandtl numbers respectively. The quantity @ is
the dissipation function given by the expression

P = '}.’[3%1 + e%z + 2‘—’%2]-

€1, €5, and e, being the rate of strain com-
ponents in the X-Y plane. As usual, the free
stream speed U ., free stream temperature T, a
characteristic dimension L, as well as the
dynamic pressure 3pU2 have been used to
obtain the non-dimensional form presented in
equations {1)}+3). Though written for fluids with
constant densities, these equations may them-
selves be used even for the study of all flow
situations where the Mach number is small and
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compressibility effects negligible. The boundary
conditions are

Far upstream: U — 1;
U=0;

T—1 (4a)

Surface S : T=T/(x)/T,. (4b)

One first writes the outer expansions of the
variables in equations (1}+3) by considering the
limit ¢ = (Re)™*,— 0, holding X fixed. These
expansions may be written as

U=UX,Y)+eU,X, ) +.... (53)

P=P(X,Y)+ ePy)(X,Y)+.... (5b)
and

T=T(X,Y)+ (X, Y) +.... (50

It is readily seen from the above, after substituting
in the differential equations and collecting the
coefficients of various powers of ¢ that the outer
flow is potential at least up to the second order.
The solution to the outer equations may be
made to satisfy the conditions given by equation
(4a). The conditions valid near the wall have
to be determined by writing an inner solution
and then matching the outer and inner solutions
to the required order.

In order to determine the inner solutions, one
uses an orthogonal coordinate system consisting
of curves parallel to the wall and lines perpendi-
cular to the wall, with the origin at the front
stagnation point. The inner coordinates are then
written as y = Y/e and x = X. The inner
expansions for the velocities, pressure and
temperature may now be written in the form:

u=u(x,y) + eu(x,y) + ... (6a)
v =evy(x,y) + e%v,(x,y) + ... (6b)
P =pi(x.y) + epax, y) + ... (6c)
t=ty(x,y) + ety(x,p) + ... (6d)

The continuity, Navier-Stokes and energy
equations then give the first order inner equations

G 0 _

ox  dy (7a)
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=0
% (7o)
du, ou;, 0%, 0p,
ul‘é;—+vlﬁ W——a—‘{ (7C)
and
ot, oy, 19%, ou\?
U, E™ + v, B_y Pr 6y + m(ay . (7d)

Equations of set (7) are the ﬁrst order boundary
layer equations of Prandtl along with the
corresponding first order energy equation. As
commented upon earlier, these equations do not
contain curvature explicitly, so that to this order,
the skin-friction and heat transfer are in-
dependent of the curvature parameter. It may be
noticed further, on examining the energy equa-
tion (7d), that the order of the dissipation term
depends on the magnitude of the quantity
(U%/C,T,). For gases, this quantity is equal
to (C, — C)M?/C,, where M is the Mach
number and C,, C, are the specific heats at
constant pressure and volume respectively.
Hence, if the Mach number is small as in slow
speed flow, dissipation is usually negligible in
gases since they have Prandtl numbers on the
order of unity. This argument does not apply to
liquids whose Prandtl numbers range anywhere
between 1 and 1000 or more. In such cases, one
must take dissipation into consideration, even
if the temperatures are moderate and the fluid
incompressible.

Collecting terms of the second order (co-
efficients of ¢) leads to the equations presented
below:

0
6“2 + —(u2 + Kyv,) =0 8a)
op,
5~ Kut =0 (8b)
du ou, ou, ou 0
u162+vla +u za +26—1+‘5%
0%u, { ( Quy  0py\ 0wy
o KPR TR Ty
- “1”1} (8¢)
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and,
" %+v o, ot, ot, 1%,
tox Ty T T2y T Proy?
o, 1 oty
=K {yul ox T Pr 6y}
2U2% (0u, Ou, ou,
= {——"— Ku, — .

The boundary conditions for the first and
second order equations may be obtained by
using the restricted matching principle of
Lagerstrom [8]. The matching and initial
conditions for the velocities, pressure and
temperature are then obtained in the form:

First order:

y=0:u(x,0) = v,(x,0) =0

tl(x’ 0) = Tw/Tw (93)
y = o0 ul(x’y) = UI(X’O)’
Vi(Xx,00=0 (9b)
pi(x) = P(X,0) 9¢)
ti(x,y) = Ti(X, 0). (9d)
Second order:
¥ = 0: uy(x,0) = v,(x,0)
=1,(x,00=0 (10a)
y— o0 uZ(x’ y) = UZ(X’ 0)
- KyU,(X,0) (10b)
va(x, y) = V3(X, 0)
oU, |
o,
p2(x,y) = P(X,0)
+ KyU*(X,0) (10d)
t{x,y) = To(X,0) = 0. (10e)

It is observed from the equations of sets (7)}-(10)
that the first order momentum equation is the
only non-linear equation in the system. The
second order momentum and the energy equa-
tions (first as well as second) are linear and non-
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homogeneous, so that the principle of super-
position may be used to solve them. This means
that if we determine a solution to the system
containing only terms arising from curvature
effects, and then another solution to the system
containing only those terms arising from dis-
placement effects and then superpose the two
solutions, the composite solution will be com-
plete in all aspects. Since the purpose of the
present paper is to confine itself to curvature
effects, all terms like U ,(x, 0) and V,(X, 0) which
arise due to displacement effects are removed
from the following analysis.

In order to simplify calculations further, the
two second order momentum equations (8b)
and (8c) are combined after eliminating p, to
yield [4],

Ou,
ul—&+ v

ou
*ﬁ‘“%’ (11)

where U, represents the inviscid surface speed
in wedge flow, obtained from potential theory.
The boundary conditions for the second order
equations are

y=0: u, =0, =0; t,(x,0)=0 (12a)
y—= oo ux,y)» — KyUy; tax, )
= T,(X,0) =0. (12b)

The equations in the present form are
amenable to a similarity analysis, when the
surface speed U,(x) and the wall temperature
T, (x) are specified in a particular way. The
similarity transformations are the same as those
used by Narasimha and Ojha [4], extended to
include the energy equation. Consider the
transformations
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¢ = i U, dx,n = 28)#U,,  (13a)

V1, y) = (28)¥1(n) and 0, (n)

t, — 1

“mry-1 Y

where f; and 8, are functions of  alone. If these
variables are substituted into the equations of
set (7), it is seen that similar solutions are
possible only if

d(inU,)
= — = . = m 1
d(inx) const; U, = Cx™ (14a)
and
dIn(T, - T)] _ )
=" i const; T, (x)
=T, + Ax?, (14b)

where C is an arbitrary constant and m, y are
parameters specifying the variation of inviscid
surface speed and wall temperature respectively.
If the dissipation effect introduced by the term
(U%/C,T,)(0uy/dy)* is negligible as for fluids
with sufficiently small Prandtl numbers, one
obtains respectively for fi(n) and 8,(n), the
classical Falkner—Skan and related energy equa-
tion of Levy [6]:

1) + fil)f i) + BIL — fPm)] =0 (15a)

1) + PrLfi(m)0;(n)

— Y2 — Bfimfim)] =0  (15b)
where the primes denote successive differenti-
ations with respect to #, while 8 = 2m/(m + 1).
In obtaining equations (15), both the quantities
A and y may be treated as arbitrary constants.
If dissipation cannot be neglected, restrictions
have to be placed on the values of 4 and 7y in
order to reduce the energy equation to a form
similar to equation (15b). It is easily verified,
using the same transformations as above that if

Y =2m=—— (16)

2-8
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the energy equation
reduces to the form

0i(m) + Pr(fi(mBi(n) — 281 1(m0,(n)
+Eff’m] =0 (17

where E = C*UZ/C,A is the Eckert number.
The Eckert number is zero in non-dissipative
flow, and its magnitude in dissipative flow
depends on both the free-stream speed U, and
the magnitudes of constants C and A. The
Eckert number can be quite large when A is
small.

Equations of set (15) and (17) have the
boundary conditions

n=0: fi0)=/1(0)=0;6,0)=1 (18a)
n—o0; filn) =1; 6,(n) = (18b)

For the second order system, the use of the
continuity equation allows the definition of the
second order stream function given by the
equations

including dissipation

W,
oy’
If the curvature K(x) is prescribed as a power
function of x by the relation K(x) = C,x' where
C, isa constant and lis a parameter, it is possible
to obtain similar solutions to the second order
equations by defining the functions f,(n) and
0,(n) according to the equations:

t

Y, = (28)fy(n) and 0,(n) = mj)———l
The exponent n is then given by the relation
n=(+ 1)/(im + 1). In the following, attention
will nonetheless be concentrated on a subset of
the above general transformations, wherein it is
required that the power of ¢ in the equation for
Y, be the same as in equation (13b) for ¥,. Such
solutions of the first and second orders have
been called ““jointly similar” in the literature [9].
Then, n = 1/2 and | = (m — 1)/2. On writing
with Narasimha and Ojha [4]

K(x) = kU,g(28)*

—k [C(m2+ ll:r xtm—1)2 (20b)

(19)

U, =

(20a)
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where k is called the ““Curvature Parameter”,
one obtains the following second order
equations:

2 NS =200 + 1S
= k{f”(nf1 =D —fif' = BIn(f? -

U A+ B+ )

07 + Pr(fi02 — (2 — B)y(f10; +1301)
+ 1201 = k{Pr[nf,6y — yn(2 - B)f10,]
—0,}. (21b)
Equation (21b) is the second order energy

equation without dissipation. If dissipation is
included, one gets the equation

(21a)

8; + Pr(f,02 — 2B(f0, + f36,) + f,61]
= k{Pr[n(f,0\ — 2Bf16,) + 2Ef' f1]

— 0,1} — 2PrEf 1" (22)

In equation (21a) above, a = L1m (n —f1), and is

a function of 8. The boundary condmons may be
written in the form

n=0: f0)=,50); 6,0 = (23a)
n—oo: fon) = —kn; 0)(0) = (23b)

The set of equations (16), (17), (21) and (22) has
been integrated numerically on a CDC 6400
digital computer, using the Runge-Kutta—Gill
integration procedure. Solutions have been
obtained for a large range of parameters,
07<Pr<g100, —0195 < B <20, 0K EX,
and —10 < y < 40 (without dissipation). The
computed results enable one to determine the
local heat transfer coefficient, as well as the
change in Nusselt number due to the second
order correction. These are given respectively
by the expressions

- 1 ,
(Nu,)(Re,) = - m |:91(0)

+ gk 012,50—)] (24a)

e 040)
2-pr k

(ANu,)(Re,)™t = — (24b)
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3. DISCUSSION AND CONCLUSIONS

Equations (15), (17), (21) and (22) along with
boundary conditions describe two dimensional
flow past a curved surface and contain the
parameters B, y, Pr, E and k. In order to bring
out the behaviour of the solutions clearly, flows
without and with dissipation are considered
separately in what follows.

(a) Non-dissipative flows (E = 0). The effect of
longitudinal curvature on heat transfer in flow
with no dissipation has been discussed in detail
by Gupta [10]. A brief summary of the results is
given below so that flows without and with
dissipation may be compared.

Figure 1 shows the variation of wall
temperature gradient §,(0)/k as a function of 8,
for specified values of y. The quantity 6%(0)/k is
positive [while 6,(0) is negative], increasing
monotonically as the flow changes from high
acceleration to separation, for positive and small
negative values of y. The large increase in

50k with the approach of separation is
similar to the trend of f%(0)/k [4], which
becomes very large near separation, S =
—0-198838. Since the second order quantities
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become far larger than the corresponding first
order quantities near separation, it is doubtful
whether the asymptotic expansions are valid
close to separation. Similarly, it is doubtful
whether the solutions are valid for large
negative values of 7, because of the singularity
at x = 0 in the prescribed surface temperature
[T (x) = T, + Ax"]. For small negative values
of y and all positive values, the solutions are
expected to be uniformly valid.

Figure 2 shows the variation in local Nusselt
number with the curvature parameter, and
compares the present results with those of
Schultz-Grunow and Breuer [7] and Van
Dyke [5]. As is clear from equation (24a), the
local Nusselt number is linearly related to ke
when Pr, y and B are fixed. With adverse
pressure gradients (8 negative), the Nusselt
number diminishes more rapidly than for
favourable pressure gradients (f positive), as ke
increases. For highly accelerated flows, the
Nusselt number varies very little with changing
ke, i.e. 65(0)/k is small for such cases. For plane
stagnation flow, (y =0, 8 =1 and Pr = 07),
the results of Fig. 2 are in exact agreement with

2:0

F1G. 1. Variation in second order wall temperature gradient (E = 0) with pressure

gradient.
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Van Dyke [5], while for flow with zero pressure
gradient (B =0), constant wall temperature
(y = 0)and Pr = 0-7, the agreement between the
present results and those of Schultz-Grunow
and Breuer [7] is not exact. In fact, though the
plot of [7] appears to be straight in Fig. 2,
there is a slight curvature in it, making it deviate
more and more from the presently calculated
results as the magnitude of ¢k increases. It has
been shown by Gustafson and Pelech [11] that

08
£:0 £r=5.0
Y =~0.
o-7h
0-6
B=0 p.
El =07 _r-04
N
‘I‘:: osl" B-10 Pr=07 y=0
[
~
2
—_— B=0 Pr=07 y=0
04 T
Refj/
B=‘O’I9 Pre
27 -0
031
B=0 pFr=07 y=-0-3
{ | L i
~0-04 ~002 0 0-02 004

ke

F16. 2. Variation in local Nusselt number (E = 0) with
curvature parameter.

the results of [7] are approximate due to the use
of the inviscid surface speed rather than the true
velocity in the boundary layer to calculate the
pressure gradient in the normal direction.

If the change in Nusselt number due to
second order effects is computed, it is seen to be
rather small (1'S per cent or less) in highly
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accelerated flows. In flows with adverse pressure
gradients however, the second order effects can
range from 0 to 14 per cent or more, as shown by
Gupta [10]. Such large differences cannot be
neglected, and the second order effects must be
taken into account for accurate predictions of
heat transfer.

(b) Flows with dissipation. In general, dis-
sipation may be expected to reduce heat transfer
from the wall to the fluid for all Prandtl numbers.
The effects of pressure gradient parameter on the
first order temperature profile are indicated in
Fig. 3, which is a plot of 8,(y) with § as a
parameter for two values of Prandtl number,
Pr =07, and Pr = 1000 and Eckert number
unity. Because of the large Eckert number
chosen, they exaggerate the effects of dis-
sipation. Nevertheless, they clearly show that
dissipation changes the wall temperature
gradient, and may cause reversed heat transfer
from the fluid to the wall, even when the wall
temperature is higher than that of the free-
stream. Many of the temperature profiles,
especially those for conditions close to separa-
tion, exhibit a point of inflection.

The effect of dissipation on the second order
temperature profile is exhibited in Fig. 4, which
shows 8,(n)/k for various values of f, Eckert
number unity and Pr = 0-7. It is interesting that
these curves exhibit a negative gradient at the
wall (i.e. 85(0)/k is negative), as opposed to the
case with no dissipation, where the gradient is
positive. For Eckert numbers intermediate
between zero and unity, 8,(0)/k changes gradually
from positive to negative values. Even when
0,(nyk starts with negative values, it becomes
positive, before reducing to zero for sufficiently
large 5 at the edge of the boundary layer. As in
non-dissipative flow, the second order effects
are large for negative values of f close to
separation and small for highly accelerated
flows. A similar trend is observed for higher
values of Prandtl number as well, except that
the magnitudes of 8,(»)/k are much larger.

Figure 5 shows the first order temperature
gradients 0;(0) as a function of f§, with Eckert
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Fi1G. 3. First order temperature profiles including dissipation, with E = 1.

FI1G. 4. Second order temperature profiles including dissipation, with E = 1.

1583



1584 V. KADAMBI and B. K. GUPTA

8,(0)

B

F1G. 5. Variation of 8,(0) with pressure gradient parameter, for various values of E.

20
\ Pr=10 £-0-05
o} L 0-10
025
20k
N
S  -40 .
iy K 05
_eol
N 0-75
S 085
N— 1 ‘ , 0,
-10-6 53 06 T-0 T3
B

FIG. 6. Variation of 8,(0)/k with pressure gradient parameter, for various values of E.
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number as a parameter, all for a Prandtl
number of 10. The temperature gradient which
is seen to be negative when the Eckert number is
small, gradually decreases in magnitude and
becomes almost zero when E = 0-75. For larger
values of Eckert number, the gradient becomes
positive, showing that heat transfer occurs from
the fluid to the wall, even though the plate
temperature is higher than that of the fluid
free-stream. Figure 6 shows the variation of the
second order gradient 85(0)/k as a function of 8,
again with Eckert number as a parameter, for a
Prandtl number of 10. When Eckert number
increases, 85(0)/k changes sign from positive to
negative, as opposed to the first order gradient
which changes from negative to positive. This
difference may be explained by referring to
equations (7d) and (8d). In equation (7d), the
term (du,/dy)* is positive, and the first order
dissipation term raises the temperature of the
fluid close to the wall above that of the fluid with
no dissipation. This in turn reduces heat transfer
from the wall to the fluid, making &',(0) decrease
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in magnitude first, and finally change sign from
negative to positive for sufficiently large values
of Eckert number. On the other hand, to the
second order, dissipation effects are represented
by the terms (Ou,/dy)x (0u,/0y)—Ku,(0u,/dy), as
seen from equation (8d). These terms are positive
if the curvature parameter k is negative and
negative if k is positive, as may be deduced from
the second order momentum equation. Hence,
for negative values of k, the second order dis-
sipation terms may be expected to reinforce the
first order terms. On a body with concave
curvature (k < 0) therefore, the first and second
order terms should both reduce heat transfer
from the warm surface to the fluid. In other
words, the temperature gradients at the wall
should be positive, or if negative, small in
magnitude compared with the case of zero
Eckert number. Similarly, if the body has
convex curvature (k > 0), the first and second
order terms are expected to cause opposing
effects.

Figure 7 shows the gradients @,(0) and

—-— 6, (0)/k

-1-0

e ————— -

-0-8

-04

-0-2

R A e o0

8, (0)/104 —=

-4

e~ First order

~——=—= Second order

| 1

-0-2

B

10 e

FiG. 7. Values of 6,(0) and 6,(0)/k with Prandt] number as parameter.
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,(0)/k as functions of B for three values of
Prandtl numbers, Pr =07, 10 and 100, so
that the effect of Prandtl numbers on these
gradients may be studied. All curves have been
plotted with Eckert number 1:0. It is clear that
'.(0) changes sign from negative to positive with
increasing values of Prandtl number, while
,(0)/k is negative for all Prandtl numbers when
Eckert number is unity. For small Eckert

/2B

Nu, Re :?

- ~—=—FPr=07 .2

\

S
0:04

ke
FiG. 8. Plot of NuRe,)"%,/(2 — f) against the curvature
parameter.

numbers, 8,(0)/k may be expected to be negative
when Pr = 07, and to become positive for large
Prandt! numbers.

These effects are more clearly exhibited in Fig.
8, which shows plots of (Nu,)(Re,)"%,/(2 — B)
against ke, for selected values of B, Pr and E.
The solid lines near the top of the figure are for
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Eckert numbers ranging from 0-05 to 10, all
for f = — 0195 and Pr = 10. It is quite clear
that the slopes of the lines change from negative
to positive as the Eckert number increases. This
means that for small dissipation, heat transfer
diminishes with change of curvature from
concave to convex, while for large dissipation,
the heat transfer increases with a similar change
of curvature. Moreover, as observed earlier, for
sufficiently large Eckert numbers, the heat
transfer is from the fluid into the plate, when the
curvature changes sign, and for a sufficiently
large convex curvature, heat transfer again
occurs from the hot surface to the fluid.

The dotted straight lines in Fig. 8 are for
Pr = 07 and varying values of B, all for Eckert
number unity. All these lines have positive
slopes, showing that even with relatively small
Prandtl numbers, dissipation can cause an
increase in heat transfer with a change of
curvature from negative to positive.

The slope of the lines drawn in Fig. 8 indicates
the change of Nusselt number due to curvature
effect, as opposed to the first order effect which
does not take account of curvature. The
magnitudes of Nu, along the line ke = 0 are
those due to the first order theory alone. It is
readily seen that when Eckert number is small
and B is close to separation, the relative change
in Nusselt number due to curvature is about
12-15 per cent. For large Eckert numbers above
0-5, this relative change may be as high as
150 per cent or greater, when ke changes from
0-0 to 0-06. Nevertheless, there lies a small range
of values of Eckert numbers between these two
extremes, where the curvature parameter has
negligible influence on heat transfer so that the
first order theory is by itself sufficient. In the
range of parameters indicated on the graph, this
condition may be expected for Eckert numbers
around 0-15, if the Prandtl number is 10. Further,
the second order effects can be quite considerable
at large Prandtl numbers, even when the pressure
gradient is positive. This can be seen from the
plots in Fig. 8 for other values of 8. Thus, for
large Prandtl numbers, the second order effects
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cannot be neglected, if reasonable approxima-
tions to heat transfer coefficient are necessary.

The results discussed above cannot be extra-
polated to large values of curvature parameter
since the theory that has so far been developed is
valid only for small curvatures. For large values
of ek, the expansions for velocity and temperature
will not be uniformly valid.

It is possible, with the curves plotted earlier,
to find the magnitude of the curvature parameter
which reduces the wall to an adiabatic surface,
correct to the second order. This is obtained by
equating Nu, in equation (24a) to zero when
there is obtained

(k€)agiavatic wan = — 01(0)/[02(0)/k]. (25)
An examination of the curves in Figs. 6 and 7
shows for a Prandtl number of 10, that the
value of ke which reduces the wall to adiabatic
conditions is positive for very small Eckert
numbers and becomes negative as the Eckert
number rises, but then again becomes positive
when the Eckert number approaches unity. This
trend is generally true of higher Prandtl numbers
as well. For a Prandtl number 0-7 on the other
hand, the value of ke for an adiabatic surface is
first positive when Eckert number is small, and
is negative at values of Eckert number near unity.
Moreover, the magnitude of curvature parameter
which renders the surface adiabatic increases
with increasing values of the pressure gradient
parameter f. The values of ke needed for an
adiabatic surface have not been calculated since
they are large, and the asymptotic expansions
are likely to be invalid for large curvatures.
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Concluding, it is seen that for fluids of large
Prandt] numbers, dissipation has a considerable
effect, even when the Eckert number is not very
large. The heat transfer characteristics of the
wall vary considerably depending on the Eckert
number, as is easily expected. When the flow is
about to separate, the second order effects can
be extremely pronounced, while they are not so
severe for accelerating flows.
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EFFET D'UNE COURBURE LONGITUDINALE D’UNE SURFACE SUR UN
TRANSFERT THERMIQUE AVEC DISSIPATION

Résumé—On a analysé par la méthod des développements asymptotiques un transfert thermique par
convection forcé dans un écoulement laminaire avec dissipation sur une surface i courbure' longitudinale.
En prenant les écoulements classiques de Falkner-Skan autour d’un diédre comme solution du premier
ordre de ’équation de quantité de mouvement, on obtient alors la solution de premier ordre de ’équation
de Iénergie avec dissipation. Puis par extension de I’analyse est obtenue la perturbation de second ordre
relative aux champs de vitesse et température. L’analyse permet de considérer une température pariétale
variable suivant une fonction de puissance de la distance quand il n’y a pas de dissipation, cependant quand
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il y a dissipation, la variation de température a la paroi est déterminée par le parametre de gradient de
pression si on recherche encore des solutions de similitude. Les équations différentielies ordinaires obtenues
4 partir de I’analyse de similarité sont résolues numériquement. On a présenté graphiquement les profils
de température calculés au second ordre en fonction du paramétre de gradient de pression, du nombre de
Prandtl, du nombre d’Eckert, du paramétre de distribution de la température pariétale et de la courbure
de la surface. On voit que 'effet de second ordre est considérable pour des conditions proches de la sépara-
tion et qu’il n’est pas nécessairement négligeable comparé a cehui du premier ordre. La dissipation peut
considérablement affecter le transfert thermique pour les fluides 4 grands nombres de Prandtl, le nombre
de Nusselt prenant des valeurs positives ou négatives quand le nombre d’Eckert varic de 0 4 1. Pour un
nombre quelconque de Prandtl donné, lorsque la courbure passe du concave au convexe, le nombre de
Nusselt décroit si le nombre d’Eckert est petit, tandis qu’il croit si le nombre d’Eckert est proche de I'unité.

EINFLUSS DER OBERFLACHENLANGSKRUMMUNG AUF DEN WARMEUBERGANG
MIT DISSIPATION

Zusammenfassung— Es wird der Wirmeiibergang mit Dissipation an einer Oberfliche, die in Stromungs-
richtung gekriimmt ist, fiir erzwungene laminare Strémung mit der Methode der angepassten asymptoti-
schen Entwicklungen untersucht. Mit der Losung der klassischen Falkner-Skan-Eckenstrémungen
als erster Nahrung fiir die Impulsgleichung wurde eine Losung erster Niaherung fiir die Energiegleichung
mit Beriicksichtigung der Dissipation ermittelt. Durch Ausdehnung der Betrachtungsweise wurde dann
die Storung zweiter Ordnung fiir das Geschwindigkeits- und Temperaturfeld ermittelt. Das Verfahren
gestattet, die Wandtemperatur als Potenzfunktion des Abstandes zu variieren, wenn man die Dissipation
vernachlissigt. Wenn man jedoch die Dissipation beriicksichtigt, wird die Anderung der Wandtemperatur
bestimmt durch den Parameter des Druckgradienten, wenn man noch dhnliche Losungen fordert. Die
gewohnlichen Differentialgleichungen aus der Ahnlichkeitsbetrachtung werden numerisch gelost. Die
in zweiter Niherung berechneten Temperaturprofile wurden graphisch aufgetragen als Funktionen des
Parameters der Druckgradienten, der Prandtl-Zahl, der Eckert-Zahl, der Wandtemperaturverteilung und
der Oberflichenkriimmung. Es wird gezeigt, dass der Effekt zweiter Ordnung beachtlich ist fiir die
Bedingungen der Ablosung und nicht ohne weiteres vernachlissigt werden kann im Vergleich mit den
Effekten erster Ordnung. Die Dissipation kann den Wirmeiibergang in Medien mit hoher Prandtl-Zahl
beachtlich beeinflussen, wobet die Nusselt-Zahl von positiven auf negative Werte iiberwechselt. wenn die
Eckert-Zahl von Null auf Eins anwichst. Weiterhin nimmt bei gegebener Prandti-Zah! die Nusselt-Zahl
beim Ubergang von einer konkaven zu einer konvexen Kriimmung der Oberfliche ab. wenn die Eckert-
Zahl klein ist, wogegen sie zunimmt. wenn die Eckert-Zahl in die Nihe von Eins kommt.

BJAUAHUE [MPOJOJBHON KPUBU3HLI IOBEPXHOCTU HA
TEINJOOBMEH C JUCCUITALNEN

AHHOTAIMA—AHAJIU3UPOBATICA TeIJI000MEH HA IMOBEPXHOCTH ¢ HPOMOJILHOR KPUBUIHOM ¢
y4eTOM MUCCHIAINMH JJIA CIy4af BHHYKACHHOTO TEYEHUA METONOM CPALIMBAEMBIX ACUMITOT-
MYeCKWX pasioxenuil. lcmoubsyd Kiaccuyeckue KIMHOBhe Tedenus @oskuepa-CroHa B
KauecTBe pelleHuii NepBoTe NpUOMKEHUA yPABHEHUA KOJUYECTBA ABHMKEHHUH, NOJYYEHO
pellieHUe NEPBOTO NPMOAMMEHNA ypAaBHEHMA DHEPIMM C Y4YeToM JuCCHnanmuu. 3aTe,
NpojomKas 9TOT AHAIN3, MOJYYeHBl DEUIeHWsA BTOPOro NPHOIMKEHNA CHKOPOCTHBIX M
TeMNepaTypHuX rosef. COrIacHO 2TOMY aHAJM3y TEMIIEPATYPa CTEHKH MOMET UAMEHATbCA
KaKk cTeneHHaA (QYHKUMA DACCTOAHUA IMPU OTCYTCTBMM auccunapuu. OJHAKO € y4eToM
OMCCHTIALMM V3MeHEHMe TeMIepaTyphl CTeHKHM ONpefelAeTcda [1apaMeTpoM rpajgueHTa
AaBJeHNA, eCaIN HeoOXOMUMbl ABTOMO/EJbHEE pemieHna. YNCIenHo pelieHs 0GLKHOBEHHbIE
nuddepennuanbHpe ypaBHEHHA, TOJIyYeHHble W3 aHAIM3a NofodusA. PaccunTanuble TeMnepa-
TypHEE NPOPUIH BTOPOTO TIPUDIIMMEH IS MPeCTaBIeHs rpaduyecku KaK pyHKIUK apaMeTpa
rpajMenTa AaBreHuA, Yuciaa [IpaHmTas, 9ucira JKKepra, napamerpa paclpefieileHUA TeMIe-
paTyphl CTEHKN ¥ KPHBH3HBL MOBEPXHOCTH. BHIHO, YTO BiMAHME BTOPOr0 NpuOIMiKeHMA
CYIECTBEHHO AJIA YCJIOBMH, GIM3KMX K OTPHIBY, M HEOOA3ATENLHO MAJIO MO CPABHEHMIO C
BAMSAHMEM MEepBOro npubamsenus. JUccUNanus MOMET OKashBATH 3HAYUTEJbHOE BIMAHNE
Ha TeILI0OGMEH B MKUIKOCTAX ¢ GonbimmMu unciaamu IIpaHparana, npu sTom uuciao Hycceawra
H3MEeHAETCA OT IIOJIOMKHTEeJbHOr0 3HAYEHHUA [0 OTPHUUATENLHOTO 110 Mepe TOro, Kak 4ueio
SKKepTa N3MEHAETCH OT HyJA jio enuHnubl. Jasee, mpu mwbom 3aganHom yucie [panaran c
U3MEHEeHHNuEeM RpMBPISHI:I oT BOI‘HyTOﬁ no BLIHyHJIOﬁ YNCII0 Hyccem;ra ymeﬂbmae'rcn mnpu
MAJIOM ddcile DKKepTa M YBeIMYUBAETCA, eCliM YHCA0 DKKepra 6JIM3Ko K euHnNe.



